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Formation of a Random Tree
• Start with a single node, the root 	



• Nodes are added one at a time	



• Each new node links to a randomly-selected existing node	



• A single connected component with N nodes, N-1 links	



• Degree distribution is exponential	



!

• In-component degree distribution is power-law
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Fragmentation of a Random Tree

• Nodes are removed one at a time: many previous studies 
on removal of links [Janson, Baur, Bertoin, Kuba]	



• When a node is removed, all links associated with it 
are removed as well	



• Random Forest: a collection of trees formed by the 
node removal process	



• Degree distribution of individual nodes is known      
(Moore/Ghosal/Newman PRE 2006)

What is the size distribution of trees in the forest? 



Main Result:	


Size Distribution of  Trees in Random Forest

distribution of trees of size s is 
controlled by one parameter: 

fraction m of remaining nodes* 

�s =
1�m

m2

�(s)�( 1
m )

�(s+ 1 + 1
m )

size distribution has a power-law tail 

�s ⇠ s�1� 1
m

for s � 1

 *exact result, valid in the infinite N limit 



Removal of a Single Node
• Remove a single, randomly-chosen, node from a 

random tree with N nodes	



• Let        be the average number of trees with size s 

• Two “conservation” laws	
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• Recursion equation (add node to original random tree) 
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existing trees	


grow in size due to new node

new trees	


attributed to new node

tree with N nodes has N-1 links	


every link connects two nodes

removal of a single node	


reduces total size by 1



Size Distribution of  Trees
• Manual iteration of recursion equation gives 	
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• By induction: incredibly simple distribution	
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• Scaling form 
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The Scaling Function
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Iterative Removal of Nodes
• Remove randomly-selected nodes, one at a time	



• Key observation: all trees in the random forest are 
statistically equivalent to a random tree! 

• Treat the number of removed nodes as time t 

• Let             be the average number of trees with size s at time t	



•  A single conservation law 	
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• Recursion equation (represents removal of one node) 
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loss of trees 	


loss rate = 	


tree size

gain of trees	


by fragmentation	



of larger ones 

normalized 	


tree-size distribution 



Rate Equation Approach
• Take the infinite tree-size limit:            	



• Treat time as continuous variable 

• Recursion equation becomes a differential equation	
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• Use limiting size distribution, fraction of remaining nodes	
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• Problem reduces to the differential equation
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fragmentation kernel = size distribution, single node removal 
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• Miraculously, exact solution of the rate equation feasible	



       	



  	



• Power-law tail	
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• Special case 	



The Size Distribution 
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Addition and Removal of Nodes

• Addition: Nodes are added at constant rate r 

• Removal: Nodes are removed at constant rate 1  

• Outcome: random forest with growing number of nodes  

• Straightforward generalization of rate equation 	
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• Normalized distribution of tree size decays exponentially	
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• Problem reduces to the differential equation 
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Summary
• Studied fragmentation of a random tree into a random forest 	



• Nodes removed one at a time	



• Distribution of tree size becomes universal in the limit of 
infinitely many nodes	



• Distribution of tree size has a power law tail	



• Exponent governing the power law depends only on the 
fraction of remaining nodes	



• Rate equation approach is a powerful analysis tool


